internet providers with DDoS protection in Gold Coast
Evaluating Customer Reviews and Testimonials
Evaluating customer reviews and testimonials is crucial when youre trying to find the most trustworthy provider! IT services in sydney . But its not as simple as just reading what others say and picking the one with the shiniest stars. First things first, you gotta look at how many reviews there are. A provider with only a handful of glowing reviews might be suspicious. On the flip side, a company with thousands of reviews isnt necessarily better if most of them are negative or lukewarm.
Next, pay attention to the content of those reviews. Are they filled with specific details about the product or service? Or do they sound more like they came from the marketing department? Be wary of overly enthusiastic comments that dont share much substance. And don't dismiss all negative feedback either - providers that ignore complaints tend to be less reliable than those who address them head-on.
How to Find the Most Trustworthy Provider - best fibre optic internet deals
internet providers with DDoS protection in Gold Coast
best business internet deals
affordable commercial internet packages
Also, check who's writing these reviews. Some providers have been known to incentivize customers to leave positive reviews. This can include discounts, freebies, or even a simple "thank you" note. If a review seems fishy or too perfect, it might be worth investigating further.
Lastly, compare reviews across different platforms. Not every provider will have great ratings everywhere, and sometimes the best insights come from unbiased third-party sites. If you notice a pattern of negativity on one site but not another, it could indicate a deeper issue that warrants closer examination.
So remember, not all reviews are created equal. Take your time, dig deep, and don't be afraid to ask questions if something doesn't seem right. Trust your gut and don't settle for a provider that doesn't earn your confidence!
Assessing the Providers Reputation and Online Presence
When it comes to finding the most trustworthy provider, assessing their reputation and online presence is a crucial step! First off, you wanna make sure that the provider isnt just putting on a facade. Check out reviews on platforms like Yelp or Google Reviews. If people are saying the provider is great, thats a good sign. But if you see a lot of negative feedback, well, you might want to think twice.
Now, dont just take one review at face value. Look for patterns. Are there a bunch of complaints about the same issue? Or do most people seem satisfied? Its also worth checking if the provider responds to reviews, especially the negative ones. If theyre ignoring feedback, thats not a good sign.
Moving on to the online presence, you wanna make sure the providers website isnt just a bunch of empty promises. First, does the site look professional? Broken links or outdated information can be red flags. Then, check for any certifications or licenses they might have.
How to Find the Most Trustworthy Provider - best business internet deals
G.Fast broadband plans for high-rise buildings
internet plans with performance guarantees
cheap NBN alternatives for households
These little badges can go a long way in showing that the provider is legit.
Social media is another place to keep an eye on. Are they active on platforms like Facebook or Twitter? Do they engage with their followers? Not being present online or not interacting with people can be a bit suspicious.
Lastly, and this might sound a bit odd, but do a quick search to see if there are any news articles about the provider. If theres any scandal or controversy, its better to know about it now rather than later.
In short, dont just rely on one source of information. Take a step back and look at the big picture. Not every provider is gonna be perfect, but the ones that stand out are the ones you can trust!
Checking for Certifications, Licenses, and Accreditations
So, youre on the hunt for a trustworthy provider, huh? Well, hold on a sec, cause theres a super important step you shouldnt skip: checking for certifications, licenses, and accreditations. I mean, seriously, it aint rocket science but it is crucial!
Think of it this way: these arent just fancy pieces of paper. No siree! Theyre like little badges of honor, showing that the provider has actually met certain standards. A license, for example, often means theyve passed a test or proven they have the skills needed.
How to Find the Most Trustworthy Provider - internet providers with DDoS protection in Gold Coast
unlimited home broadband deals
infrastructure support for telecom companies
top-rated customer service internet providers
Accreditations? Those usually mean an outside org (organization!) has vetted their services and deemed them legit.
Dont just assume everyones on the up-and-up. Nope, you gotta do your homework. It isnt enough to just trust what they say. Ask to see these documents. Or better yet, check with the issuing bodies themselves (you know, the folks who handed out the certifications in the first place). A quick search online can often confirm their validity.
Now, Im not saying someone without all the bells and whistles cant be good. Perhaps theyre new, or maybe theyve chosen not to pursue certain credentials for whatever reason (budget, time, who knows?). But generally speaking, a provider who does have these things is showing a commitment to quality and professionalism. And thats something worth paying attention to, isnt it? Its a sigh of relief, knowing they arent a complete and utter fraud, right?!
Considering the Providers Experience and Expertise
Okay, so youre on the hunt for a provider you can really trust, huh? (Good for you!). Dont just skim over their qualifications, seriously! Considering the providers experience and expertise isnt just checking a box; its vital. Its about digging a little deeper than what their website throws at you.
Like, have they been doing this for, like, five minutes? Or are they seasoned pros with years under their belt? Experience matters, yknow? It indicates theyve likely seen a wide range of situations, and arent just theoretically knowledgeable. (Although, theory is important too!).
And lets talk expertise. It aint just about having a bunch of fancy certificates (though those are nice, sure!). Does their skillset really match your needs? Do they specialize in what youre looking for, or are they more of a generalist? Sometimes, a specialist is precisely what you need! Dont be afraid to ask about their specific training and if they keep up with the latest advancements in their field.
You shouldnt disregard the importance of checking references or reading reviews, either. What do other people say about their interactions? Have they consistently delivered positive outcomes?
How to Find the Most Trustworthy Provider - internet providers with DDoS protection in Gold Coast
best fibre optic internet deals
compliant internet solutions for enterprises
top-rated VoIP providers
If there are red flags, dont ignore them! You know, gut feelings are often correct.
Ultimately, finding a trustworthy provider isnt a crapshoot. It takes effort. But, hey, when you do your homework and properly assess their experience and expertise, youre far more likely to find someone you can truly rely on, and thats worth the effort, I think!
Five ESPRIT programmes (ESPRIT 0 to ESPRIT 4) ran consecutively from 1983 to 1998. ESPRIT 4 was succeeded by the Information Society Technologies (IST) programme in 1999.
BBC Domesday Project, a partnership between Acorn Computers Ltd, Philips, Logica and the BBC with some funding from the European Commission's ESPRIT programme, to mark the 900th anniversary of the original Domesday Book, an 11th-century census of England. It is frequently cited as an example of digital obsolescence on account of the physical medium used for data storage.
CGAL, the Computational Geometry Algorithms Library (CGAL) is a software library that aims to provide easy access to efficient and reliable algorithms in computational geometry. While primarily written in C++, Python bindings are also available. The original funding for the project came from the ESPRIT project.
Eurocoop & Eurocode: ESPRIT III projects to develop systems for supporting distributed collaborative working.
Open Document Architecture, a free and open international standard document file format maintained by the ITU-T to replace all proprietary document file formats. In 1985 ESPRIT financed a pilot implementation of the ODA concept, involving, among others, Bull corporation, Olivetti, ICL and Siemens AG.
Paradise: A sub-project of the ESPRIT I project, COSINE[1] which established a pan-European computer-based network infrastructure that enabled research workers to communicate with each other using OSI. Paradise implemented a distributed X.500 directory across the academic community.
Password: Part of the ESPRIT III VALUE project,[2] developed secure applications based on the X.509 standard for use in the academic community.
ProCoS I Project (1989–1991), ProCoS II Project (1992–1995), and ProCoS-WG Working Group (1994–1997) on Provably Correct Systems, under ESPRIT II.[3]
REDO Project (1989–1992) on software maintenance, under ESPRIT II.[4]
RAISE, Rigorous Approach to Industrial Software Engineering, was developed as part of the European ESPRIT II LaCoS project in the 1990s, led by Dines Bjørner.
REMORA methodology is an event-driven approach for designing information systems, developed by Colette Rolland. This methodology integrates behavioral and temporal aspects with concepts for modelling the structural aspects of an information system. In the ESPRIT I project TODOS, which has led to the development of an integrated environment for the design of office information systems (OISs),
SAMPA: The Speech Assessment Methods Phonetic Alphabet (SAMPA) is a computer-readable phonetic script originally developed in the late 1980s.
SCOPES: The Systematic Concurrent design of Products, Equipments and Control Systems project was a 3-year project launched in July, 1992, with the aim of specifying integrated computer-aided (CAD) tools for design and control of flexible assembly lines.
SIP (Advanced Algorithms and Architectures for Speech and Image Processing), a partnership between Thomson-CSF, AEG, CSELT and ENSPS (ESPRIT P26), to develop the algorithmic and architectural techniques required for recognizing and understanding spoken or visual signals and to demonstrate these techniques in suitable applications.[5]
StatLog: "ESPRIT project 5170. Comparative testing and evaluation of statistical and logical learning algorithms on large-scale applications to classification, prediction and control"[6]
SUNDIAL (Speech UNderstanding DIALgue)[7] started in September 1988 with Logica Ltd. as prime contractor, together with Erlangen University, CSELT, Daimler-Benz, Capgemini, Politecnico di Torino. Followed the Esprit P.26 to implement and evaluate dialogue systems to be used in telephone industry.[8] The final results were 4 prototypes in 4 languages, involving speech and understanding technologies, and some criteria for evaluation were also reported.[9]
ISO 14649 (1999 onward): A standard for STEP-NC for CNC control developed by ESPRIT and Intelligent Manufacturing System.[10]
Transputers: "ESPRIT Project P1085" to develop a high performance multi-processor computer and a package of software applications to demonstrate its performance.[11]
Web for Schools, an ESPRIT IV project that introduced the World Wide Web in secondary schools in Europe. Teachers created more than 70 international collaborative educational projects that resulted in an exponential growth of teacher communities and educational activities using the World Wide Web
^Pirani, Giancarlo, ed. (1990). Advanced algorithms and architectures for speech understanding. Berlin: Springer-Verlag. ISBN9783540534020.
^"Machine Learning, Neural and Statistical Classification", Editors: D. Michie, D.J. Spiegelhalter, C.C. Taylor February 17, 1994 page 4, footnote 2, retrieved 12/12/2015 "The above book (originally published in 1994 by Ellis Horwood) is now out of print. The copyright now resides with the editors who have decided to make the material freely available on the web." http://www1.maths.leeds.ac.uk/~charles/statlog/
The background of the Web came from the efforts of scientists and designers to build and adjoin computer networks. The Internet Method Suite, the collection of regulations made use of to communicate between networks and gadgets online, arose from r & d in the United States and involved worldwide partnership, particularly with researchers in the UK and France. Computer science was an arising self-control in the late 1950s that started to consider time-sharing in between computer customers, and later on, the possibility of attaining this over vast location networks. J. C. R. Licklider developed the concept of a global network at the Data processing Techniques Office (IPTO) of the United States Department of Defense (DoD) Advanced Study Projects Firm (ARPA). Independently, Paul Baran at the RAND Corporation proposed a distributed network based upon data in message blocks in the very early 1960s, and Donald Davies conceived of packet switching in 1965 at the National Physical Laboratory (NPL), proposing a national industrial information network in the UK. ARPA granted contracts in 1969 for the development of the ARPANET project, directed by Robert Taylor and taken care of by Lawrence Roberts. ARPANET adopted the package switching modern technology suggested by Davies and Baran. The network of User interface Message Processors (Brats) was developed by a group at Bolt, Beranek, and Newman, with the layout and spec led by Bob Kahn. The host-to-host procedure was defined by a group of graduate students at UCLA, led by Steve Crocker, along with Jon Postel and others. The ARPANET broadened quickly across the USA with connections to the United Kingdom and Norway. Numerous early packet-switched networks emerged in the 1970s which researched and offered information networking. Louis Pouzin and Hubert Zimmermann spearheaded a simplified end-to-end technique to internetworking at the IRIA. Peter Kirstein put internetworking right into practice at College University London in 1973. Bob Metcalfe established the theory behind Ethernet and the PARC Universal Package. ARPA campaigns and the International Network Working Team established and refined ideas for internetworking, in which multiple separate networks can be joined into a network of networks. Vint Cerf, currently at Stanford College, and Bob Kahn, now at DARPA, published their study on internetworking in 1974. Through the Net Experiment Keep in mind series and later RFCs this advanced into the Transmission Control Procedure (TCP) and Web Procedure (IP), 2 protocols of the Net procedure suite. The layout included concepts spearheaded in the French CYCLADES task guided by Louis Pouzin. The development of package changing networks was underpinned by mathematical operate in the 1970s by Leonard Kleinrock at UCLA. In the late 1970s, national and worldwide public data networks arised based on the X. 25 procedure, developed by Rémi Després and others. In the United States, the National Scientific Research Structure (NSF) financed nationwide supercomputing centers at several universities in the USA, and offered interconnectivity in 1986 with the NSFNET task, hence producing network accessibility to these supercomputer websites for study and academic organizations in the USA.International connections to NSFNET, the development of style such as the Domain System, and the adoption of TCP/IP on existing networks in the USA and all over the world marked the starts of the Internet. Commercial Internet service providers (ISPs) arised in 1989 in the United States and Australia. Minimal exclusive connections to parts of the Web by formally commercial entities emerged in numerous American cities by late 1989 and 1990. The optical foundation of the NSFNET was deactivated in 1995, eliminating the last constraints on the use of the Internet to bring business web traffic, as website traffic transitioned to optical networks managed by Sprint, MCI and AT&T in the United States. Research at CERN in Switzerland by the British computer system researcher Tim Berners-Lee in 1989–-- 90 led to the World Wide Web, linking hypertext papers right into an information system, easily accessible from any type of node on the network. The dramatic growth of the ability of the Net, made it possible for by the introduction of wave division multiplexing (WDM) and the rollout of fiber optic cords in the mid-1990s, had a revolutionary effect on culture, business, and innovation. This enabled the rise of near-instant communication by e-mail, immediate messaging, voice over Web Protocol (VoIP) telephone calls, video chat, and the Internet with its discussion online forums, blogs, social networking solutions, and online purchasing websites. Raising quantities of information are transmitted at greater and greater speeds over fiber-optic networks running at 1 Gbit/s, 10 Gbit/s, and 800 Gbit/s by 2019. The Web's requisition of the worldwide interaction landscape was quick in historical terms: it only communicated 1% of the information streaming via two-way telecommunications networks in the year 1993, 51% by 2000, and greater than 97% of the telecommunicated details by 2007. The Web remains to expand, driven by ever before higher amounts of online info, commerce, amusement, and social networking services. Nevertheless, the future of the worldwide network may be shaped by local differences.
ICT is also used to refer to the convergence of audiovisuals and telephone networks with computer networks through a single cabling or link system. There are large economic incentives to merge the telephone networks with the computer network system using a single unified system of cabling, signal distribution, and management. ICT is an umbrella term that includes any communication device, encompassing radio, television, cell phones, computer and network hardware, satellite systems and so on, as well as the various services and appliances with them such as video conferencing and distance learning. ICT also includes analog technology, such as paper communication, and any mode that transmits communication.[2]
ICT is a broad subject and the concepts are evolving.[3] It covers any product that will store, retrieve, manipulate, process, transmit, or receive information electronically in a digital form (e.g., personal computers including smartphones, digital television, email, or robots). Skills Framework for the Information Age is one of many models for describing and managing competencies for ICT professionals in the 21st century.[4]
The phrase "information and communication technologies" has been used by academic researchers since the 1980s.[5] The abbreviation "ICT" became popular after it was used in a report to the UK government by Dennis Stevenson in 1997,[6] and then in the revised National Curriculum for England, Wales and Northern Ireland in 2000. However, in 2012, the Royal Society recommended that the use of the term "ICT" should be discontinued in British schools "as it has attracted too many negative connotations".[7] From 2014, the National Curriculum has used the word computing, which reflects the addition of computer programming into the curriculum.[8]
The money spent on IT worldwide has been estimated as US$3.8 trillion[10] in 2017 and has been growing at less than 5% per year since 2009. The estimated 2018 growth of the entire ICT is 5%. The biggest growth of 16% is expected in the area of new technologies (IoT, Robotics, AR/VR, and AI).[11]
The 2014 IT budget of the US federal government was nearly $82 billion.[12] IT costs, as a percentage of corporate revenue, have grown 50% since 2002, putting a strain on IT budgets. When looking at current companies' IT budgets, 75% are recurrent costs, used to "keep the lights on" in the IT department, and 25% are the cost of new initiatives for technology development.[13]
The average IT budget has the following breakdown:[13]
34% personnel costs (internal), 31% after correction
16% software costs (external/purchasing category), 29% after correction
33% hardware costs (external/purchasing category), 26% after correction
17% costs of external service providers (external/services), 14% after correction
The estimated amount of money spent in 2022 is just over US$6 trillion.[14]
The world's technological capacity to store information grew from 2.6 (optimally compressed) exabytes in 1986 to 15.8 in 1993, over 54.5 in 2000, and to 295 (optimally compressed) exabytes in 2007, and some 5 zettabytes in 2014.[15][16] This is the informational equivalent to 1.25 stacks of CD-ROM from the earth to the moon in 2007, and the equivalent of 4,500 stacks of printed books from the earth to the sun in 2014. The world's technological capacity to receive information through one-way broadcast networks was 432 exabytes of (optimally compressed) information in 1986, 715 (optimally compressed) exabytes in 1993, 1.2 (optimally compressed) zettabytes in 2000, and 1.9 zettabytes in 2007.[15] The world's effective capacity to exchange information through two-way telecommunication networks was 281 petabytes of (optimally compressed) information in 1986, 471 petabytes in 1993, 2.2 (optimally compressed) exabytes in 2000, 65 (optimally compressed) exabytes in 2007,[15] and some 100 exabytes in 2014.[17] The world's technological capacity to compute information with humanly guided general-purpose computers grew from 3.0 × 10^8 MIPS in 1986, to 6.4 x 10^12 MIPS in 2007.[15]
The ICT Development Index ranks and compares the level of ICT use and access across the various countries around the world.[19] In 2014 ITU (International Telecommunication Union) released the latest rankings of the IDI, with Denmark attaining the top spot, followed by South Korea. The top 30 countries in the rankings include most high-income countries where the quality of life is higher than average, which includes countries from Europe and other regions such as "Australia, Bahrain, Canada, Japan, Macao (China), New Zealand, Singapore, and the United States; almost all countries surveyed improved their IDI ranking this year."[20]
On 21 December 2001, the United Nations General Assembly approved Resolution 56/183, endorsing the holding of the World Summit on the Information Society (WSIS) to discuss the opportunities and challenges facing today's information society.[21] According to this resolution, the General Assembly related the Summit to the United Nations Millennium Declaration's goal of implementing ICT to achieve Millennium Development Goals. It also emphasized a multi-stakeholder approach to achieve these goals, using all stakeholders including civil society and the private sector, in addition to governments.
To help anchor and expand ICT to every habitable part of the world, "2015 is the deadline for achievements of the UN Millennium Development Goals (MDGs), which global leaders agreed upon in the year 2000."[22]
Today's society shows the ever-growing computer-centric lifestyle, which includes the rapid influx of computers in the modern classroom.
There is evidence that, to be effective in education, ICT must be fully integrated into the pedagogy. Specifically, when teaching literacy and math, using ICT in combination with Writing to Learn[23][24] produces better results than traditional methods alone or ICT alone.[25] The United Nations Educational, Scientific and Cultural Organisation (UNESCO), a division of the United Nations, has made integrating ICT into education as part of its efforts to ensure equity and access to education. The following, which was taken directly from a UNESCO publication on educational ICT, explains the organization's position on the initiative.
Information and Communication Technology can contribute to universal access to education, equity in education, the delivery of quality learning and teaching, teachers' professional development and more efficient education management, governance, and administration. UNESCO takes a holistic and comprehensive approach to promote ICT in education. Access, inclusion, and quality are among the main challenges they can address. The Organization's Intersectoral Platform for ICT in education focuses on these issues through the joint work of three of its sectors: Communication & Information, Education and Science.[26]
OLPC Laptops at school in Rwanda
Despite the power of computers to enhance and reform teaching and learning practices, improper implementation is a widespread issue beyond the reach of increased funding and technological advances with little evidence that teachers and tutors are properly integrating ICT into everyday learning.[27] Intrinsic barriers such as a belief in more traditional teaching practices and individual attitudes towards computers in education as well as the teachers own comfort with computers and their ability to use them all as result in varying effectiveness in the integration of ICT in the classroom.[28]
School environments play an important role in facilitating language learning. However, language and literacy barriers are obstacles preventing refugees from accessing and attending school, especially outside camp settings.[29]
Mobile-assisted language learning apps are key tools for language learning. Mobile solutions can provide support for refugees' language and literacy challenges in three main areas: literacy development, foreign language learning and translations. Mobile technology is relevant because communicative practice is a key asset for refugees and immigrants as they immerse themselves in a new language and a new society. Well-designed mobile language learning activities connect refugees with mainstream cultures, helping them learn in authentic contexts.[29]
Representatives meet for a policy forum on M-Learning at UNESCO's Mobile Learning Week in March 2017.
ICT has been employed as an educational enhancement in Sub-Saharan Africa since the 1960s. Beginning with television and radio, it extended the reach of education from the classroom to the living room, and to geographical areas that had been beyond the reach of the traditional classroom. As the technology evolved and became more widely used, efforts in Sub-Saharan Africa were also expanded. In the 1990s a massive effort to push computer hardware and software into schools was undertaken, with the goal of familiarizing both students and teachers with computers in the classroom. Since then, multiple projects have endeavoured to continue the expansion of ICT's reach in the region, including the One Laptop Per Child (OLPC) project, which by 2015 had distributed over 2.4 million laptops to nearly two million students and teachers.[30]
The inclusion of ICT in the classroom, often referred to as M-Learning, has expanded the reach of educators and improved their ability to track student progress in Sub-Saharan Africa. In particular, the mobile phone has been most important in this effort. Mobile phone use is widespread, and mobile networks cover a wider area than internet networks in the region. The devices are familiar to student, teacher, and parent, and allow increased communication and access to educational materials. In addition to benefits for students, M-learning also offers the opportunity for better teacher training, which leads to a more consistent curriculum across the educational service area. In 2011, UNESCO started a yearly symposium called Mobile Learning Week with the purpose of gathering stakeholders to discuss the M-learning initiative.[30]
Implementation is not without its challenges. While mobile phone and internet use are increasing much more rapidly in Sub-Saharan Africa than in other developing countries, the progress is still slow compared to the rest of the developed world, with smartphone penetration only expected to reach 20% by 2017.[30] Additionally, there are gender, social, and geo-political barriers to educational access, and the severity of these barriers vary greatly by country. Overall, 29.6 million children in Sub-Saharan Africa were not in school in the year 2012, owing not just to the geographical divide, but also to political instability, the importance of social origins, social structure, and gender inequality. Once in school, students also face barriers to quality education, such as teacher competency, training and preparedness, access to educational materials, and lack of information management.[30]
In modern society, ICT is ever-present, with over three billion people having access to the Internet.[31] With approximately 8 out of 10 Internet users owning a smartphone, information and data are increasing by leaps and bounds.[32] This rapid growth, especially in developing countries, has led ICT to become a keystone of everyday life, in which life without some facet of technology renders most of clerical, work and routine tasks dysfunctional.
The most recent authoritative data, released in 2014, shows "that Internet use continues to grow steadily, at 6.6% globally in 2014 (3.3% in developed countries, 8.7% in the developing world); the number of Internet users in developing countries has doubled in five years (2009–2014), with two-thirds of all people online now living in the developing world."[20]
However, hurdles are still large. "Of the 4.3 billion people not yet using the Internet, 90% live in developing countries. In the world's 42 Least Connected Countries (LCCs), which are home to 2.5 billion people, access to ICTs remains largely out of reach, particularly for these countries' large rural populations."[33] ICT has yet to penetrate the remote areas of some countries, with many developing countries dearth of any type of Internet. This also includes the availability of telephone lines, particularly the availability of cellular coverage, and other forms of electronic transmission of data. The latest "Measuring the Information Society Report" cautiously stated that the increase in the aforementioned cellular data coverage is ostensible, as "many users have multiple subscriptions, with global growth figures sometimes translating into little real improvement in the level of connectivity of those at the very bottom of the pyramid; an estimated 450 million people worldwide live in places which are still out of reach of mobile cellular service."[31]
Favourably, the gap between the access to the Internet and mobile coverage has decreased substantially in the last fifteen years, in which "2015 was the deadline for achievements of the UN Millennium Development Goals (MDGs), which global leaders agreed upon in the year 2000, and the new data show ICT progress and highlight remaining gaps."[22] ICT continues to take on a new form, with nanotechnology set to usher in a new wave of ICT electronics and gadgets. ICT newest editions into the modern electronic world include smartwatches, such as the Apple Watch, smart wristbands such as the Nike+ FuelBand, and smart TVs such as Google TV. With desktops soon becoming part of a bygone era, and laptops becoming the preferred method of computing, ICT continues to insinuate and alter itself in the ever-changing globe.
Information communication technologies play a role in facilitating accelerated pluralism in new social movements today. The internet according to Bruce Bimber is "accelerating the process of issue group formation and action"[34] and coined the term accelerated pluralism to explain this new phenomena. ICTs are tools for "enabling social movement leaders and empowering dictators"[35] in effect promoting societal change. ICTs can be used to garner grassroots support for a cause due to the internet allowing for political discourse and direct interventions with state policy[36] as well as change the way complaints from the populace are handled by governments. Furthermore, ICTs in a household are associated with women rejecting justifications for intimate partner violence. According to a study published in 2017, this is likely because "access to ICTs exposes women to different ways of life and different notions about women's role in society and the household, especially in culturally conservative regions where traditional gender expectations contrast observed alternatives."[37]
A review found that in general, outcomes of such ICT-use – which were envisioned as early as 1925[38] – are or can be as good as in-person care with health care use staying similar.[39]
Scholar Mark Warschauer defines a "models of access" framework for analyzing ICT accessibility. In the second chapter of his book, Technology and Social Inclusion: Rethinking the Digital Divide, he describes three models of access to ICTs: devices, conduits, and literacy.[40] Devices and conduits are the most common descriptors for access to ICTs, but they are insufficient for meaningful access to ICTs without third model of access, literacy.[40] Combined, these three models roughly incorporate all twelve of the criteria of "Real Access" to ICT use, conceptualized by a non-profit organization called Bridges.org in 2005:[41]
Physical access to technology
Appropriateness of technology
Affordability of technology and technology use
Human capacity and training
Locally relevant content, applications, and services
The most straightforward model of access for ICT in Mark Warschauer's theory is devices.[40] In this model, access is defined most simply as the ownership of a device such as a phone or computer.[40] Warschauer identifies many flaws with this model, including its inability to account for additional costs of ownership such as software, access to telecommunications, knowledge gaps surrounding computer use, and the role of government regulation in some countries.[40] Therefore, Warschauer argues that considering only devices understates the magnitude of digital inequality. For example, the Pew Research Center notes that 96% of Americans own a smartphone,[42] although most scholars in this field would contend that comprehensive access to ICT in the United States is likely much lower than that.
A conduit requires a connection to a supply line, which for ICT could be a telephone line or Internet line. Accessing the supply requires investment in the proper infrastructure from a commercial company or local government and recurring payments from the user once the line is set up. For this reason, conduits usually divide people based on their geographic locations. As a Pew Research Center poll reports, Americans in rural areas are 12% less likely to have broadband access than other Americans, thereby making them less likely to own the devices.[43] Additionally, these costs can be prohibitive to lower-income families accessing ICTs. These difficulties have led to a shift toward mobile technology; fewer people are purchasing broadband connection and are instead relying on their smartphones for Internet access, which can be found for free at public places such as libraries.[44] Indeed, smartphones are on the rise, with 37% of Americans using smartphones as their primary medium for internet access[44] and 96% of Americans owning a smartphone.[42]
In 1981, Sylvia Scribner and Michael Cole studied a tribe in Liberia, the Vai people, who have their own local script. Since about half of those literate in Vai have never had formal schooling, Scribner and Cole were able to test more than 1,000 subjects to measure the mental capabilities of literates over non-literates.[45] This research, which they laid out in their book The Psychology of Literacy,[45] allowed them to study whether the literacy divide exists at the individual level. Warschauer applied their literacy research to ICT literacy as part of his model of ICT access.
Scribner and Cole found no generalizable cognitive benefits from Vai literacy; instead, individual differences on cognitive tasks were due to other factors, like schooling or living environment.[45] The results suggested that there is "no single construct of literacy that divides people into two cognitive camps; [...] rather, there are gradations and types of literacies, with a range of benefits closely related to the specific functions of literacy practices."[40] Furthermore, literacy and social development are intertwined, and the literacy divide does not exist on the individual level.
Warschauer draws on Scribner and Cole's research to argue that ICT literacy functions similarly to literacy acquisition, as they both require resources rather than a narrow cognitive skill. Conclusions about literacy serve as the basis for a theory of the digital divide and ICT access, as detailed below:
There is not just one type of ICT access, but many types. The meaning and value of access varies in particular social contexts. Access exists in gradations rather than in a bipolar opposition. Computer and Internet use brings no automatic benefit outside of its particular functions. ICT use is a social practice, involving access to physical artifacts, content, skills, and social support. And acquisition of ICT access is a matter not only of education but also of power.[40]
Therefore, Warschauer concludes that access to ICT cannot rest on devices or conduits alone; it must also engage physical, digital, human, and social resources.[40] Each of these categories of resources have iterative relations with ICT use. If ICT is used well, it can promote these resources, but if it is used poorly, it can contribute to a cycle of underdevelopment and exclusion.[45]
In the early 21st century a rapid development of ICT services and electronical devices took place, in which the internet servers multiplied by a factor of 1000 to 395 million and its still increasing. This increase can be explained by Moore's law, which states, that the development of ICT increases every year by 16–20%, so it will double in numbers every four to five years.[46] Alongside this development and the high investments in increasing demand for ICT capable products, a high environmental impact came with it. Software and Hardware development as well as production causing already in 2008 the same amount of CO2 emissions as global air travels.[46]
There are two sides of ICT, the positive environmental possibilities and the shadow side. On the positive side, studies proved, that for instance in the OECD countries a reduction of 0.235% energy use is caused by an increase in ICT capital by 1%.[47] On the other side the more digitization is happening, the more energy is consumed, that means for OECD countries 1% increase in internet users causes a raise of 0.026% electricity consumption per capita and for emerging countries the impact is more than 4 times as high.
Currently the scientific forecasts are showing an increase up to 30700 TWh in 2030 which is 20 times more than it was in 2010.[47]
To tackle the environmental issues of ICT, the EU commission plans proper monitoring and reporting of the GHG emissions of different ICT platforms, countries and infrastructure in general. Further the establishment of international norms for reporting and compliance are promoted to foster transparency in this sector.[48]
Moreover it is suggested by scientists to make more ICT investments to exploit the potentials of ICT to alleviate CO2 emissions in general, and to implement a more effective coordination of ICT, energy and growth policies.[49] Consequently, applying the principle of the coase theorem makes sense. It recommends to make investments there, where the marginal avoidance costs of emissions are the lowest, therefore in the developing countries with comparatively lower technological standards and policies as high-tech countries. With these measures, ICT can reduce environmental damage from economic growth and energy consumption by facilitating communication and infrastructure.
^Ozdamli, Fezile; Ozdal, Hasan (May 2015). "Life-long Learning Competence Perceptions of the Teachers and Abilities in Using Information-Communication .Technologies". Procedia - Social and Behavioral Sciences. 182: 718–725. doi:10.1016/j.access=free.
^William Melody et al., Information and Communication Technologies: Social Sciences Research and Training: A Report by the ESRC Programme on Information and Communication Technologies, ISBN0-86226-179-1, 1986. Roger Silverstone et al., "Listening to a long conversation: an ethnographic approach to the study of information and communication technologies in the home", Cultural Studies, 5(2), pages 204–227, 1991.
^Blackwell, C.K., Lauricella, A.R. and Wartella, E., 2014. Factors influencing digital technology use in early childhood education. Computers & Education, 77, pp.82-90.
^Bimber, Bruce (1998-01-01). "The Internet and Political Transformation: Populism, Community, and Accelerated Pluralism". Polity. 31 (1): 133–160. doi:10.2307/3235370. JSTOR3235370. S2CID145159285.
^Hussain, Muzammil M.; Howard, Philip N. (2013-03-01). "What Best Explains Successful Protest Cascades? ICTs and the Fuzzy Causes of the Arab Spring". International Studies Review. 15 (1): 48–66. doi:10.1111/misr.12020. hdl:2027.42/97489. ISSN1521-9488.
^Cardoso LG, Sorenson SB. Violence against women and household ownership of radios, computers, and phones in 20 countries. American Journal of Public Health. 2017; 107(7):1175–1181.
^ abcdScribner and Cole, Sylvia and Michael (1981). The Psychology of Literacy. ISBN9780674433014.
^ abGerhard, Fettweis; Zimmermann, Ernesto (2008). "ITC Energy Consumption - Trends and Challenges". The 11th International Symposium on Wireless Personal Multimedia Communications (WPMC 2008) – via ResearchGate.
Feridun, Mete; Karagiannis, Stelios (2009). "Growth Effects of Information and Communication Technologies: Empirical Evidence from the Enlarged EU". Transformations in Business and Economics. 8 (2): 86–99.
Absolutely. Small businesses benefit from professional IT services to protect data, maintain systems, avoid downtime, and plan for growth. Even basic IT support ensures your technology works efficiently, helping you stay competitive without needing an in-house IT department.
Regular maintenance—often monthly or quarterly—ensures your systems stay secure, updated, and free of issues. Preventative IT maintenance can reduce downtime, extend equipment life, and identify potential threats before they cause costly disruptions.
Yes, most providers tailor services to suit your business size, industry, and needs—whether you need full IT management or specific services like helpdesk support, cybersecurity, or cloud migration.
Managed IT services involve outsourcing your company’s IT support and infrastructure to a professional provider. This includes monitoring, maintenance, data security, and tech support, allowing you to focus on your business while ensuring your systems stay secure, updated, and running smoothly.